History of Symphonize.js – JavaScript Client Pivot to Data Generation Library

…the history of symphonize.js So Far!

NOTE: If you just want to check out the code bits, scroll down to the sub-title #symphonize #hacking. Also important to note I’m putting the library through a fairly big refactor at the moment so that everything aligns with the documentation that I’ve recently created. So many things may not be implemented, but we’re moving toward v0.1.0, which will be a functional implementation of the library available via npm based entirely on the documentation and specs that I outline after the history.

A Short History

I started the symphonize.js project back on the 1st of November. Originally I started the project as a client driver library for Orchestrate.io, but within a day Chris Molozian commented and pointed out that there was already a client driver library for Orchestrate.io available that Steve Kaliski (Github @sjkaliski and Twitter @stevekaliski and http://stevekaliski.com/) had coded called logically orchestrate.js. Since this was available I did a pivot to symphonize.js being a data generation project instead.

The comment that enabled symphonize.js to pivot from client driver to data generation library.
The comment that made me realize symphonize.js should pivot from client driver to data generation library.

The Official Start of Symphonize.js

After that start and quick pivot I posted a blog with Orchestrate.io titled “Test Data Builder Symphonize.js With Chance.js (1/3)” to officially start the project. In that post I covered key value and graph basics, with a dive into using chance.js and orchestrate.js with examples. Near the same time I also posted a related blog on publishing an NPM module, which is the deployment focus of Symphonize.js.

Reasons Reasoning

There are two main reasons why I chose Orchestrate.io and a data generation library as the two things I wanted to combine. The first, is I knew the orchestrate.io team and really dug what they were building. I wanted to work with it and check out how well it would work for my use cases in the future. The ability to go sit down, discuss with them what they were building was great (which I interviewed Matt Heitzenroder @roder that you can watch Orchestrate.io, Stop Dealing With the Database Infrastructure!) The second reason is that my own startup that I’m co-founding with Aaron Gray (@agray) needed to use key value and graph data storage of some type, somewhere. Orchestrate.io looked like a perfect fit. After some research, giving it a go, it fit very well into what we are building.

CRUD, cURL Hacking & Next Steps

Early December I knocked out two support articles about testing APIs with cURL in Some JavaScript API Coding With Restify & Express & Hacking it With cURL …Segment #1 (with some Webstorm to boot) and Some JavaScript API Coding With Restify & Express & Hacking it With cURL …Segment #2 and an article on the Orchestrate.io Blog for part 2 of that series titled Symphonize Some Create, Read, Update & Delete [CRUD] via Orchestrate.js (2/3).

December then rolled into the standard holiday doldrums and slowdowns. So fast forward to January post a few rounds of beer and good tidings and I got the 3rd in the series published titled Getting Serious With Symphony.js – JavaScript TDD/BDD Coding Practices (3/3). The post doesn’t speak too much to symphony.js usage but instead my efforts to use TDD or BDD practices in trying to write the library.

Slowly I made progress in building the library and finally it’s in a mostly releasable state now. I use this library daily in working with the code base for Deconstructed and imagine I’ll use it ongoing for many other projects. I hope others might be able to find uses for it too and maybe even add capabilities or ideas. Just ping me via Twitter @adron or Github @adron, add an issue on Github and I’ll be happy to accept pull requests for new features, code refactoring, add you to the project or whatever else you’re interested in.

#symphonize #hacking

Now for the nitty gritty. If you’re up for using or contributing to the project check out the symphonize.js github pages site first. It’s got all the information to help get you kick started. However, you can keep reading as I’ve included much of the information there along with the examples from the README.md below.

NOTE: As I mentioned at the top of this blog entry, the funcitonal implementation of code isn’t available via npm just yet, myself and some others are ripping through a good refactor to align the implementation fo the library with the rewritten and newly available documentation – included blow and at the github pages.

How to use this project in one of your projects.

[sourcecode language=”bash”]
npm install symphonize

How to setup this project for development.

First fork the repository located at https://github.com/Adron/symphonize.

[sourcecode language=”javascript”]
git clone git@github.com:YourUserName/symphonize.git
cd symphonize
npm install

Using The Library

The intended usage is to invocate the JavaScript object and then call generate. That’s it, a super simple process. The code would look like this:

[sourcecode language=”javascript”]var Symphonize = require(‘../bin/symphonize’);
var symphonize = new Symphonize();

The basic constructor invocation like this utilizes the generate.json file to generate data from. To inject the json configuration programmatically just inject the json configuration information via the constructor.

[sourcecode language=”javascript”]
var configJson = {"schema":"keyvalue"};

var Symphonize = require(‘../bin/symphonize’);
var symphonize = new Symphonize();

Once the Symphonize data generator has been created call the generate() method as shown.

[sourcecode language=”javascript”]

That’s basically it. But you say, it’s supposed to do X, Y or Z. Well that’s where the json configuration data comes into play. In the configuration data you can set the data fields and what they’ll generate, what type of data will be generated, the specific schema, how many records to create and more.


The library comes with the generate.json file already setup with a working example. Currently the generation file looks like this:

[sourcecode language=”javascript”]
"schema": "keyvalue", /* keyvalue, graph, event, geo */
"count": 20, /* X values to generate. */
"write_source": "console", /* console, orchestrateio and whatever other data sources that might come up. */
"fields": {
/* generates a random name. */
"fieldName": "name",
/* generates a random dice roll of a d20. */
"fieldTwo": "d20",
/* A single lorum ipsum random statement is genereated. */
"fieldSentence": "sentence",
/* A random guid is generated. */
"fieldGuid": "guid" }

Configuration File Definitions

Each of the configuration options that are available have a default in the configuration file. The default is listed in italics with each definition of the configuration option listed below.

  • schema” : This is used to select what type of data structure type is going to be generated. The default iskeyvalue for this option.
  • count” : This provides the total records that are to be generated by the library. The default is 1 for this option.
  • write_source” : This provides the location to output the generated data to. The default is console for this option.
  • fields” : This is a JSON field within the JSON configuration file that provides configuration options around the fields, number of fields and their respective data to generate. The default is one field, with a default data type of guid. Each of the respective entries in this JSON option is a self contained JSON name and value pair. This then looks simply like this (which is also shown above in part):[sourcecode language=”javascript”]{
    "someBoolean": "boolean",
    "someChar": "character",
    "aFloat": "float",
    "GetAnInt": "integer",
    "fieldTwo": "d20",
    "diceRollD10": "d10",
    "_string": {
    "fieldName": "NameOfFieldForString",
    "length": 5,
    "pool": "abcdefgh"
    "_sentence": {
    "fieldName": "NameOfFiledOfSentences",
    "sentence": "5"
    "fieldGuid": "guid"
  • Fields Configuration: For each of the fields you can either set the field to a particular data type or leave it empty. If the field name and value pair is left empty then the field defaults to guid. The types of data to generate for fields are listed below. These listed are all simple field and data generation types. More complex nested generation types are listed below under Complex Field Configuration below the simple section.
    • boolean“: This generates a boolean value of true or false.
    • character“: This generates a single character, such as ‘1’, ‘g’ or ‘N’.
    • float“: This generates a float value, similar to something like -211920142886.5024.
    • integer“: This generates an integer value, similar to something like 1, 14 or 24032.
    • d4“: This generates a random integer value based on a dice roll of one four sided dice. The integer range being 1-10.
    • d6“: This generates a random integer value based on a dice roll of one six sided dice. The integer range being 1-10.
    • d8“: This generates a random integer value based on a dice roll of one eight sided dice. The integer range being 1-10.
    • d10“: This generates a random integer value based on a dice roll of one ten sided dice. The integer range being 1-10.
    • d12“: This generates a random integer value based on a dice roll of one twelve sided dice. The integer range being 1-10.
    • d20“: This generates a random integer value based on a dice roll of one twenty sided dice. The integer range being 1-20.
    • d30“: This generates a random integer value based on a dice roll of one thirty sided dice. The integer range being 1-10.
    • d100“: This generates a random integer value based on a dice roll of one hundred sided dice. The integer range being 1-10.
    • guid“: This generates a random globally unique identifier. This value would be similar to ‘F0D8368D-85E2-54FB-73C4-2D60374295E3’, ‘e0aa6c0d-0af3-485d-b31a-21db00922517’ or ‘1627f683-efeb-4db8-8174-a5f2e3378c87’.
  • Complex Field Configuration: Some fields require more complex configuration for data generation, simply because the data needs some baseline of what the range or length of the values need to be. The following list details each of these. It is also important to note that these complex field configurations do not have defaults, each value must be set in the JSON configuration or an error will be thrown detailing that a complex field type wasn’t designated. Each of these complex field types is a JSON name and value parameter. The name is the passed in data type with a preceding underscore ‘_’ to generate with the value having the configuration parameters for that particular data type.
    • _string“: This generates string data based on a length and pool parameters. Required fields for this include fieldNamelength and pool. The JSON would look like this:[sourcecode language=”javascript”]"_string": {
      "fieldName": "NameOfFieldForString",
      "length": 5,
      "pool": "abcdefgh"

      Samples of the result would look like this for the field; ‘abdef’, ‘hgcde’ or ‘ahdfg’.

    • _hash“: This generates a hash based on the length and upper parameters. Required fields for this included fieldNamelength and upper. The JSON would look like this:[sourcecode language=”javascript”]"_hash": {
      "fieldName": "HashFieldName",
      "length": 25,
      "casing": ‘upper’

      Samples of the result would look like this for the field: ‘e5162f27da96ed8e1ae51def1ba643b91d2581d8’ or ‘3F2EB3FB85D88984C1EC4F46A3DBE740B5E0E56E’.

    • _name”: This generates a name based on the middle, *middleinitial* and prefix parameters. Required fields for this included fieldNamemiddlemiddle_initial and prefix. The JSON would look like this:[sourcecode language=”javascript”]"_name": {
      "fieldName": "nameFieldName",
      "middle": true,
      "middle_initial": true,
      "prefix": true

      Samples of the result would look like this for the field: ‘Dafi Vatemi’, ‘Nelgatwu Powuku Heup’, ‘Ezme I Iza’, ‘Doctor Suosat Am’, ‘Mrs. Suosat Am’ or ‘Mr. Suosat Am’.

So that covers the kick start of how eventually you’ll be able to setup, use and generate data. Until then, jump into the project and give us a hand.

After this, more examples on the way, cheers!

How to Build an NPM Package, Beginning the Symphonize Project

NPM has helped to build on the massive Node.js popularity and drive JavaScript from a simple scripting language in the web browser to a powerful and capable back-end server language. A quick refresher, NPM stands for Node.js Package Manager and each package is made up of:

  1. a folder containing a program described by a package.json file.
  2. a gzipped tarball containing [1]
    1. a url that resolves to [2]
    2. a <name>@<version> that is published on the registry with [A]
    3. a <name>@<tag> that points to [B]
    4. a <name> that has a “latest” tag satisfying [C]
    5. a git url that, when cloned, results in [1]
Path structure view in Jetbrains Webstorm IDE.
Path structure view in Jetbrains Webstorm IDE.

With that basic understanding of what a module is that NPM provides, let’s jump through the steps to build a module that provides some basic functionality. I won’t cover too many parts in detail yet, just the happy path to getting an NPM library running.

First let’s create an appropriate folder and file structure to get started with. Here’s the commands I ran to get started.

[sourcecode language=”bash”]
mkdir bin
mkdir lib

With these two directories created I then created the following files in the designated paths. In bin I created the symphonize.js file and in lib I created a main.js file.

Now, I added the following code to the symphonize.js file.

[sourcecode language=”javascript”]
exports.Coupling = function (searchThis, forThis) {
var returnValue = ‘no’;
if (searchThis.indexOf(forThis) > -1) {
returnValue = ‘yes’;
return returnValue;

In the main.js file I added the following.

[sourcecode language=”javascript”]
(function () {
var couple = require(‘../bin/symphonize’);
couple.Coupling("Sample text", "Sample");

There are a number of issues with this code, I know, but it’s just a sample of the minimal amount of code, folder structure and packages.json that I need to get this package installed and ready for iteration as I move forward with the actual code base and what functionality will actually be added. Speaking of the packages.json file, I created one and added the following configuration settings to it.

[sourcecode language=”javascript”]
"author": "Adron Hall",
"name": "symphonize",
"description": "Prints out data to the console! Will be iterating soon for real functionality!",
"version": "0.1.0",
"repository": {
"url": "git@github.com:Adron/symphonize.git"
"main": "./lib/main",
"bin": {
"replaceme": "./bin/symphonize"
"dependencies": {},
"devDependencies": {},
"optionalDependencies": {},
"engines": {
"node": "*"

That is now enough for me to at least get the module added to the global NPM repository, get things pointed back to Github appropriately and move forward with actual coding. I might even setup some continuous builds and delivery at some point, since I’ve now got the end point of where the libraries will be going. The commands to get a module uploaded to the NPM Repository are as follows. This command of course assumes I’ve already added a user using npm adduser or I’ve added one via the web site interface at https://npmjs.org/.

[sourcecode language=”bash”]
npm publish

I’ve now got everything prepared and uploaded to NPM there is now a symphonize module library ready for use.

My NPM Page for Symphonize. Click to go to the actual NPM page.
My NPM Page for Symphonize. Click to go to the actual NPM page.

Here’s a few quick references to where everything is: