Tag Archives: Ml4all

Zhi Yang Presenting “Hierarchical Topic Modeling in Cancer Patients’ Mutational Profiles”

zhi-yang.pngIntroducing Zhi Yang > @zhiiiyang < presenting “Hierarchical Topic Modeling in Cancer Research”.

Topic models have been widely applied to extract topics from various range of documents or collections of texts, i.e., online customers reviews, medical records, scientific
journals, legal documents, books and etc. Its application facilitates the process for us to quickly understand the most featured and commonly shared information embedded texts without actually reading through the entire collection. In addition, topic models also allow us to access the contribution of each topic and its representations across different documents. Human genomes have been exposed to an assortment of mutational processes by contributing to unique patterns of somatic mutations. What would happen if we apply the same concept to the somatic mutations obtained from the cancer patients and look for “topics” of mutations? What would these “topics” tell us about the most important information for our health, genetic, risk factors for cancer and
something more that slip under the radar?

Shiraishi et al’s have proposed a topic model targeted for somatic mutations to capture the characteristics and burdens contributed by mutational processes. By closely examining the burdens, we’d like to compare them across different categories, say, for example, time, cancer subtype, ethnicity, smoking history, etc. Then, we’d like to develop the statistical machinery to infer the difference between the mutational profiles across different categories and associate the variations with the know exposures. This tool is potentially useful for identifying novel and existing mutational processes and correlating them with risk factors in which later can be used to monitor any treatment effects in personalized medicine and targeted therapy.

Read the publication here at biorxiv and come check out Zhi Yang’s talk at ML4ALL happening April 28th-30th in amazing Portland, Oregon! Get your tickets to attend here. For the schedule, our excellent sponsors docs for the conference, check out the ML4ALL Conference Site!

Sachi Parikh Presenting “My Journey Learning ML and AI through Self Study as a High School Student”

sachi-parikhIntroducing Sachi Parikh > @parikhsachi < presenting “My Journey Learning ML and AI through Self Study as a High School Student”.

Sachi is a high school student in the Bay Area who is interested in AI and Machine Learning and loves to code, read and learn. In the talk she’s put together for us she’s delved into the path she’s taken to get into this topic. I’ve seen an outline of this path and I’ll admit, I’m impressed, but you’ll have to come and attend to talk to see the outline!

Come check out Sachi Parikh’s talk and learn about this learning path at ML4ALL happening April 28th-30th in amazing Portland, Oregon! Get your tickets to attend here. For the schedule, our excellent sponsors docs for the conference, check out the ML4ALL Conference Site!

Karl Weinmeister Presenting “Build, train, and serve your ML models on Kubernetes with Kubeflow”

karl-weinmeisterIntroducing Karl Weinmeister > @kweinmeister < presenting “Build, train, and serve your ML models on Kubernetes with Kubeflow”.

Karl is a Developer Advocacy Manager from Google’s Developer Relations Artificial Intelligence and Machine Learning team.  Karl has worked extensively in cloud and mobile, and was a contributor to one of the first AI-based crossword puzzle solvers that is still referenced today.

Distributing ML workloads across multiple nodes has become common. To achieve higher and higher levels of accuracy, data scientists are using more data and more complex models than ever before.

Kubeflow is an open-source platform for model building, serving, and training. It is built on industry standard Kubernetes infrastructure and runs in multiple clouds and on-premises.

In this session, we’ll discuss the problems that Kubeflow solves, and how you can use it to create reproducible ML workflows.

Come check out Karl Weinmeister’s talk at ML4ALL happening April 28th-30th in amazing Portland, Oregon! Get your tickets to attend here. For the schedule, our excellent sponsors docs for the conference, check out the ML4ALL Conference Site!

Aeva van der Veen Presenting “Gaming Rigs and ML Pipelines: how to get started with the tools you already have”

aeva-vanIntroducing Aeva van der Veen > @aevavoom < presenting “Gaming Rigs and ML Pipelines: how to get started with the tools you already have”.

Aeva is an outspoken open source advocate with over a decade experience contributing to F/OSS software and communities. They have been building distributed systems on Linux-based systems since ’99, and are most well known for their work in the OpenStack community wherein they founded Ironic, the Bare-Metal-as-a-Service project. Aeva lives in rainy Seattle and enjoys staying home when not travelling for work.

If you think that only big tech companies or PhD scientists can use ML & AI, I’d like to show you that an individual open-source enthusiast can build and train a model on commodity hardware using Open Data – and then scale that up on a public cloud.

And if you’re a PC gamer, you probably already have all the tools you need!

  • fast.ai, an easy-to-learn Python ML framework
  • nvidia-docker on an Ubuntu Gaming PC
  • public-domain GIS imagery
  • a couple terabytes of storage space and a fast internet connection

This talk grew out of a startup competition last year: we tried to use public-domain satellite imagery to help predict and prevent forest fires. Even though we chose not to pursue this as a business, it’s an excellent example of how combine open source software, public data, and a gaming PC to build an ML pipeline.

Come check out Aeva van der Veen’s talk at ML4ALL happening April 28th-30th in amazing Portland, Oregon! Get your tickets to attend here. For the schedule, our excellent sponsors docs for the conference, check out the ML4ALL Conference Site!

Jules S. Damji Presenting “MLflow: Infrastructure for a Complete Machine Learning Life Cycle”

jules-damjiIntroducing Jules S. Damji > @2twitme < presenting “MLflow: Infrastructure for a Complete Machine Learning Life Cycle”.

Jules S. Damji is an Apache Spark Community and Developer Advocate at Databricks. He is a hands-on developer with over 20 years of experience and has worked at leading companies, such as Sun Microsystems, Netscape, @Home, LoudCloud/Opsware, VeriSign, ProQuest, and Hortonworks, building large-scale distributed systems. He holds a B.Sc and M.Sc in Computer Science and MA in Political Advocacy and Communication from Oregon State University, Cal State, and Johns Hopkins University respectively.

He’s also the Program Chair for Spark + AI Summit

ML development brings many new complexities beyond the traditional software development lifecycle. Unlike in traditional software development, ML developers want to try multiple algorithms, tools, and parameters to get the best results, and they need to track this information to reproduce work. In addition, developers need to use many distinct systems to productionize models. To address these problems, many companies are building custom “ML platforms” that automate this lifecycle, but even these platforms are limited to a few supported algorithms and to each company’s internal infrastructure.

In this session, we introduce MLflow (mlflow.org), a new open source project from Databricks that aims to design an open ML platform where organizations can use any ML library and development tool of their choice to reliably build and share ML applications. MLflow introduces simple abstractions to package reproducible projects, track results, and encapsulate models that can be used with many existing tools, accelerating the ML lifecycle for organizations of any size.

With a short demo, you see a complete ML model life-cycle example, you will walk away with: MLflow concepts and abstractions for models, experiments, and projects How to get started with MLFlow Using tracking Python APIs during model training Using MLflow UI to visually compare and contrast experimental runs with different tuning parameters and evaluate metrics

Come check out Jules S. Damji’s talk at ML4ALL happening April 28th-30th in amazing Portland, Oregon! Get your tickets to attend here. For the schedule, our excellent sponsors docs for the conference, check out the ML4ALL Conference Site!

Seth Jaurez Presenting “Deep Learning for Computer Vision with Applications for Wildlife Conservation”

seth-juarezIntroducing Seth Jaurez > @sethjuarez < presenting “Deep Learning for Computer Vision with Applications for Wildlife Conservation”.

Seth Juarez holds a Master’s Degree in Computer Science where his field of research was Artificial Intelligence, specifically in the realm of Machine Learning. Seth is a Microsoft Evangelist working with the Channel 9 team. When he is not working in that area, Seth devotes his time to an open source Machine Learning Library, specifically for .NET, intended to simplify the use of popular machine learning models, as well as complex statistics and linear algebra.

Deep Learning is one of the buzziest of tech buzz words at the moment. This session is designed to remove the mysticism from this amazing form of Artificial Intelligence. Attendees will be led through the wilderness of the foundational principles underlying modern machine learning until they reach the oasis of a full-fledged understanding of deep learning for computer vision. While this session is not for the faint of heart, initiates will attain a solid understanding of the basics of machine learning all the way through powerful image-deciphering convolutional neural networks.

Come check out Seth Jaurez’s talk at ML4ALL happening April 28th-30th in amazing Portland, Oregon! Get your tickets to attend here. For the schedule, our excellent sponsors docs for the conference, check out the ML4ALL Conference Site!

Siyu Yang Presenting “Deep Learning for Computer Vision with Applications for Wildlife Conservation”

siyu-yangIntroducing Siyu Yang > @yangsiyu_ < presenting “Deep Learning for Computer Vision with Applications for Wildlife Conservation”.

Siyu is a data scientist at the AI for Earth program at Microsoft focusing on developing machine learning enabled solutions to aid environmental conservation efforts at university labs, startups, non-profits, and government agencies. Before joining this team, she worked on data powered code completion tools at Visual Studio.

At the AI for Earth program at Microsoft, we find new ways to use machine learning to solve global environmental challenges. This talk is an overview of several problems in wildlife conservation where computer vision is poised to make a significant impact. We will survey three different problems in this space: species classification from handheld photos, automated camera trap image processing, and animal detection from aerial imagery. For each area, we will discuss (1) why this problem is challenging from a computer vision perspective, (2) why solving this problem can support conservation, and (3) the data sets we’re working with and the models we’ve built to address this problem. The talk will also include a demo of the AI for Earth Species Classification API and the Camera Trap Animal Detection API.

What will attendees learn:

  1. Find out what Microsoft’s AI for Earth program is all about
  2. Understand how data, particularly visual data, is used by wildlife biologists for conservation.
  3. Experience through live demos how computer vision techniques can bring value to people working with such data, and understand our plan to deploy these technologies.

Come check out Siyu Yang’s talk at ML4ALL happening April 28th-30th in amazing Portland, Oregon! Get your tickets to attend here. For the schedule, our excellent sponsors docs for the conference, check out the ML4ALL Conference Site!