Simple Go HTTP Server Starter in 15 Minutes

This is a quick starter, to show some of the features of Go’s http library. (sample repo here) The docs for the library are located here if you want to dig in deeper. In this post however I cover putting together a simple http server with a video on creating the http server, setting a status code, which provides the basic elements you need to further build out a fully featured server. This post is paired with a video I’ve put together, included below.

00:15 Reference to the Github Repo where I’ve put the code written in this sample.
https://github.com/Adron/coro-era-coding-go-sample
00:18 Using Goland IDE (Jetbrains) to clone the repository from Github.
00:40 Creating code files.
01:00 Pasted in some sample code, and review the code and what is being done.
02:06 First run of the web server.
02:24 First function handler to handle the request and response of an HTTP request and response cycle.
04:56 Checking out the response in the browser.
05:40 Checking out the same interaction with Postman. Also adding a header value and seeing it returned via the browser & related header information.
09:28 Starting the next function to provide further HTTP handler functionality.
10:08 Setting the status code to 200.
13:28 Changing the status code to 500 to display an error.

Getting a Server Running

I start off the project by pulling an empty repository that I had created before starting the video. In this I use the Jetbrains Goland IDE to pull this repository from Github.

1

Next I create two files; main.go and main_test.go. We won’t use the main_test.go file right now, but in a subsequent post I’ll put together some unit tests specifically to test out our HTTP handlers we’ll create. Once those are created I pasted in some code that just has a basic handler, using an anonymous function, provides some static file hosting, and then sets up the server and starts listening. I make a few tweaks, outlined in the video, and execute a first go with the following code.

package main

import (
    "fmt"
    "net/http"
)

func main() {
    http.HandleFunc("/", func (w http.ResponseWriter, r *http.Request) {
        fmt.Fprintf(w, "Welcome to my website!")
    })

    http.ListenAndServe(":8080", nil)
}

When that executes, opening a browser to localhost:8080 will bring up the website which then prints out “Welcome to my website!”.

2

Adding a Function as an HTTP Handler

The next thing I want to add is a function that can act as an HTTP handler for the server. To do this create a function just like we’d create any function in Go. For this example, the function I built included several print line calls to the ResponseWriter with Request properties and a string passed in.

func RootHandler(w http.ResponseWriter, r *http.Request){
    fmt.Fprintln(w, "This is my content.")
    fmt.Fprintln(w, r.Header)
    fmt.Fprintln(w, r.Body)
}

In the func main I changed out the root handler to use this newly created handler instead of the anonymous function that it currently has in place. So swap out this…

http.HandleFunc("/", func (w http.ResponseWriter, r *http.Request) {
    fmt.Fprintf(w, "Welcome to my website!")
})

with this…

http.HandleFunc("/", RootHandler)

Now the full file reads as shown.

package main

import (
    "fmt"
    "net/http"
)

func main() {
    http.HandleFunc("/", RootHandler)
    http.ListenAndServe(":8080", nil)
}

Now executing this and navigating to localhost:8080 will display the following.

3

The string is displayed first “This is my content.”, then the header, and body respectively. The body, we can see is empty. Just enclosed with two braces {}. The header is more interesting. It is returned as a map type, between the brackets []. Showing an accept, accept-encoding, accept-language, user-agent, and other header information that was passed.

This is a good thing to explore further, check out how to view or set the values associated with the header values in HTTP responses, requests, and their related metadata. To go a step further, and get into this metadata a tool like Postman comes in handy. I open this tool up, setup a GET request and add an extra header value just to test things out.

4

Printing Readable Body Contents

For the next change I wanted to get a better print out of body contents, as the previous display was actually just attempting to print out the body in an unreadable way. In this next section I used an ioutil function to get the body to print out in a readable format. The ioutil.ReadAll function takes the body, then I retrieve a body variable with the results, pending no error, the body variable is then cast as a string and print out to the ResponseWriter on the last line. The RootHandler function then reads like this with the changes.

func RootHandler(w http.ResponseWriter, r *http.Request){
    fmt.Fprintln(w, "This is my content.")
    fmt.Fprintln(w, r.Header)

    defer r.Body.Close()

    body, err := ioutil.ReadAll(r.Body)
    if err != nil {
        fmt.Fprintln(w, err)
    }
    fmt.Fprintln(w, string(body))
}

If the result is then requested using Postman again, the results now display appropriately!

5

Response Status Codes!

HTTP Status codes fit in to a set of ranges for various categories of responses. The most common code is of course the success code, which is 200 “Status OK”. Another common one is status code 500, which is a generic catch all for “Server Error”. The ranges are as follows:

  • Informational responses (100–199)
  • Successful responses (200–299)
  • Redirects (300–399)
  • Client errors (400–499)
  • and Server errors (500–599)

For the next function, to get an example working of how to set this status code, I added the following function.

func ResponseExampleHandler(w http.ResponseWriter, r *http.Request) {
    w.WriteHeader(200)
    fmt.Fprintln(w, "Testing status code. Manually added a 200 Status OK.")
    fmt.Fprintln(w, "Another line.")
}

With that, add a handler to the main function.

http.HandleFunc("/response", ResponseExampleHandler)

Now we’re ready to try that out. In the upper right of Postman, the 200 status is displayed. The other data is shown in the respective body & header details of the response.

6

Next up, let’s just write a function specifically to return an error. We’ll use the standard old default 500 status code.

func ErrorResponseHandler(w http.ResponseWriter, r *http.Request) {
    w.WriteHeader(500)
    fmt.Fprintln(w, "Server error.")
}

Then in main, as before, we’ll add the http handle for the function handler.

http.HandleFunc("/errexample", ErrorResponseHandler)

Now if the server is run again and an HTTP request is sent to the end point, the status code changes to 500 and the message “Server error.” displays on the page.

7

Summary

That’s a quick intro to writing an HTTP server with Go. From here, we can take many next steps such as writing tests to verify the function handlers, or setup a Docker image in which to deploy the server itself. In subsequent blog entries I’ll write up just those and many other step by step procedures. For now, a great next step is to expand on trying out the different functions and features of the http library.

That’s it for now. However, if you’re interested in joing me to write some JavaScript, Go, Python, Terraform, and more infrastructure, web dev, and coding in general I stream regularly on Twitch at https://twitch.tv/adronhall, post the VOD’s to YouTube along with entirely new tech and metal content at https://youtube.com/c/ThrashingCode. Feel free to check out a coding session, ask questions, interject, or just come and enjoy the tunes!

Some JavaScript API Coding With Restify & Express & Hacking it With cURL …Segment #2

Ah, part 2! If you’re looking for part 1, click this link.

Review: In the last blog entry I went through more than a few examples of using cURL to issue GET requests against various end points using Node.js & Restify. I also covered the basics on where to go to find cURL in case it isn’t installed. The last part I covered was a little bit of WebStorm info to boot. In this part of the series I’m now going to dive into the HTTP verbs beyond GET.

POST

The practice around issuing a command via http verb to save data is via a post. When you issue a post via cURL use the -X followed by POST to designate a post verb, then -H to assign the content type parameter. In this particular example I’ve set it to application/json since my payload of data will be JSON format. Then add the final data with a -d option, followed by the actual data.

[sourcecode language=”bash”]curl -X POST -H "Content-Type: application/json" -d ‘{"uuid":"79E5591A-1E54-4562-A276-AFC266F54390","webid":"56E62C3A-D6BC-4F4F-B72A-E6CE081190B6"}’ http://localhost:3000/ident%5B/sourcecode%5D

Other data types can be sent, which the content type can be appropriately set for including; html, json, script, text or html. One example of this same command, issued with jQuery on the client side would actually look like this.

[sourcecode language=”javascript”]
var data = {"uuid":"79E5591A-1E54-4562-A276-AFC266F54390","webid":"56E62C3A-D6BC-4F4F-B72A-E6CE081190B6"};

$.post( "http://localhost:3000/ident", function( data ) {
$( ".result" ).html( data );
});
[/sourcecode]

When building post end points via express one of the things you may run into is the following message being displayed in the console.

[sourcecode language=”bash”]
/usr/local/bin/node app.js
connect.multipart() will be removed in connect 3.0
visit https://github.com/senchalabs/connect/wiki/Connect-3.0 for alternatives
connect.limit() will be removed in connect 3.0
[/sourcecode]

The immediate fix for this, until the changes are made (which may or may not mean to just alwasy  is to replace this line

[sourcecode language=”javascript”]
app.use(express.bodyParser());
[/sourcecode]

with these lines

[sourcecode language=”javascript”]
app.use(express.json());
app.use(express.urlencoded());
[/sourcecode]

So here’s some common examples for use from a great write up on writing basic RESTful APIs with Node.js and Express from the Modulus blog.

[sourcecode language=”javascript”]
var express = require(‘express’);
var app = express();

app.use(express.json());
app.use(express.urlencoded());

var quotes = [
{ author : ‘Audrey Hepburn’, text : "Nothing is impossible, the word itself says ‘I’m possible’!"},
{ author : ‘Walt Disney’, text : "You may not realize it when it happens, but a kick in the teeth may be the best thing in the world for you"},
{ author : ‘Unknown’, text : "Even the greatest was once a beginner. Don’t be afraid to take that first step."},
{ author : ‘Neale Donald Walsch’, text : "You are afraid to die, and you’re afraid to live. What a way to exist."}
];

app.get(‘/’, function(req, res) {
res.json(quotes);
});

app.get(‘/quote/random’, function(req, res) {
var id = Math.floor(Math.random() * quotes.length);
var q = quotes[id];
res.json(q);
});

app.get(‘/quote/:id’, function(req, res) {
if(quotes.length <= req.params.id || req.params.id < 0) {
res.statusCode = 404;
return res.send(‘Error 404: No quote found’);
}

var q = quotes[req.params.id];
res.json(q);
});

app.post(‘/quote’, function(req, res) {
if(!req.body.hasOwnProperty(‘author’) ||
!req.body.hasOwnProperty(‘text’)) {
res.statusCode = 400;
return res.send(‘Error 400: Post syntax incorrect.’);
}

var newQuote = {
author : req.body.author,
text : req.body.text
};

quotes.push(newQuote);
res.json(true);
});

app.listen(process.env.PORT || 3412);
[/sourcecode]

This is a great little snippet of code to use for testing your curling against just to check out.

References:

Some JavaScript API Coding With Restify & Express & Hacking it With cURL …Segment #1 (with some Webstorm to boot)

So often I end up putting together some RESTful services (or the intent is to at least build them with that premise, but we all know how that ends up). The API URIs routing gets put together and one wants to take a crack at the service as soon as possible. Here’s a quick guide for using cURL to take some basic actions against the services and understand what you’re getting back.

The first thing to do is make sure you can run JavaScript, which means you have a computer. The second thing is to get cURL, which means you’re running some variant of Linux or UNIX. In most scenarios one would be running OS-X. The easiest way to determine if it is installed on your computer just open up a terminal and type ‘curl –help’. You should get a result with all the switches, which is almost always a bit of overload.

[sourcecode language=”bash”]$ curl –help
Usage: curl [options…]
Options: (H) means HTTP/HTTPS only, (F) means FTP only
–anyauth Pick "any" authentication method (H)
-a, –append Append to target file when uploading (F/SFTP)
–basic Use HTTP Basic Authentication (H)
–cacert FILE CA certificate to verify peer against (SSL)
–capath DIR CA directory to verify peer against (SSL)
-E, –cert CERT[:PASSWD] Client certificate file and password (SSL)
–cert-type TYPE Certificate file type (DER/PEM/ENG) (SSL)
–ciphers LIST SSL ciphers to use (SSL)
–compressed Request compressed response (using deflate or gzip)
-K, –config FILE Specify which config file to read
–connect-timeout SECONDS Maximum time allowed for connection
-C, –continue-at OFFSET Resumed transfer offset
-b, –cookie STRING/FILE String or file to read cookies from (H)
-c, –cookie-jar FILE Write cookies to this file after operation (H)
–create-dirs Create necessary local directory hierarchy
–crlf Convert LF to CRLF in upload
–crlfile FILE Get a CRL list in PEM format from the given file
-d, –data DATA HTTP POST data (H)
–data-ascii DATA HTTP POST ASCII data (H)
–data-binary DATA HTTP POST binary data (H)
–data-urlencode DATA HTTP POST data url encoded (H)
–delegation STRING GSS-API delegation permission
–digest Use HTTP Digest Authentication (H)
–disable-eprt Inhibit using EPRT or LPRT (F)
–disable-epsv Inhibit using EPSV (F)
-D, –dump-header FILE Write the headers to this file
–egd-file FILE EGD socket path for random data (SSL)
–engine ENGINE Crypto engine (SSL). "–engine list" for list
-f, –fail Fail silently (no output at all) on HTTP errors (H)
-F, –form CONTENT Specify HTTP multipart POST data (H)
–form-string STRING Specify HTTP multipart POST data (H)
–ftp-account DATA Account data string (F)
–ftp-alternative-to-user COMMAND String to replace "USER [name]" (F)
–ftp-create-dirs Create the remote dirs if not present (F)
–ftp-method [MULTICWD/NOCWD/SINGLECWD] Control CWD usage (F)
–ftp-pasv Use PASV/EPSV instead of PORT (F)
-P, –ftp-port ADR Use PORT with given address instead of PASV (F)
–ftp-skip-pasv-ip Skip the IP address for PASV (F)
–ftp-pret Send PRET before PASV (for drftpd) (F)
–ftp-ssl-ccc Send CCC after authenticating (F)
–ftp-ssl-ccc-mode ACTIVE/PASSIVE Set CCC mode (F)
–ftp-ssl-control Require SSL/TLS for ftp login, clear for transfer (F)
-G, –get Send the -d data with a HTTP GET (H)…[/sourcecode]

Don’t get intimidated! It goes on and on and on, but just know it’s installed if you see all these goodies. If you don’t get the results above, then installing cURL is the next step. I’ll leave that to you. Here’s some links to download and get started however.

Next you’ll of course need Node.js and Restify installed. I’ll assume you have Node.js installed. Create a directory and in that directory just run the following command.

[sourcecode language=”bash”]
npm install restify
[/sourcecode]

Next create a file called server.js in that directory you’ve just installed restify in. Here’s the initial JavaScript code for that file that I’ve used to put together for the first few examples of using cURL.

[sourcecode language=”javascript”]
var restify = require(‘restify’);

function respond(req, res, next) {
res.send(‘hello ‘ + req.params.name);
}

var server = restify.createServer();
server.get(‘/hello/:name’, respond);
server.head(‘/hello/:name’, respond);

server.listen(8080, function() {
console.log(‘%s listening at %s’, server.name, server.url);
});
[/sourcecode]

Ok, now to run this with node.js just issue the command to launch node.js with this file that was just created.

[sourcecode language=”bash”]
node server.js
restify listening at http://0.0.0.0:8080
[/sourcecode]

Getting Get

Now the service is running on port 8080 against 0.0.0.0. To check out what a standard GET verb will do in a browser, open up a browser and navigate to http://0.0.0.0:8080.

Browsing the GET response via Chrome.
Browsing the GET response via Chrome.

You’ll see this in the browser window. Just straight plain text too. If you look at source, this is all you get back. Now open up a terminal and run the following cURL command to execute a GET against the URI & port. This is the most basic cURL command one can make. It is simply issuing a GET request against the URI and will display the body of the response.

[sourcecode language=”bash”]
curl 0.0.0.0:8080
[/sourcecode]

The response will be similar to this for the particular request.

[sourcecode language=”bash”]
{"code":"ResourceNotFound","message":"/ does not exist"}
[/sourcecode]

Your terminal will probably stick the subsequent prompt at the end of the result too, because the result doesn’t end in a newline. Beware of that, your prompt hasn’t disappeared. 😉

To get a little more information you can get the header of the response dumped into the terminal with a -i. The -i option stands for –include, to include the header. Issue the command as either line shown below.

[sourcecode language=”bash”]
curl -i http://0.0.0.0:8080
curl –include http://0.0.0.0:8080
[/sourcecode]

The response will be provide a little bit more about what is going on.

[sourcecode language=”bash”]
HTTP/1.1 404 Not Found
Content-Type: application/json
Content-Length: 56
Date: Wed, 27 Nov 2013 00:27:36 GMT
Connection: keep-alive

{"code":"ResourceNotFound","message":"/ does not exist"}
[/sourcecode]

With this response the actual response error code number is shown. In this case we have a 404, which points us to the problem with this curl request. The server isn’t returning anything to our curl request. If we look at the code, we can see that the ‘get’ route is setup as ‘/hello/:name’ which means that the domain root is only looking at http://url_root/hello/someName for a request to be made in order to return a response.

[sourcecode language=”javascript”]
var server = restify.createServer();
server.get(‘/hello/:name’, respond);
server.head(‘/hello/:name’, respond);
[/sourcecode]

Issue a command against the server now with the following curl request.

[sourcecode language=”bash”]
curl -i http://0.0.0.0:8080/hello/Adron
[/sourcecode]

The response should come back as an actual response with content.

[sourcecode language=”bash”]
HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 13
Date: Wed, 27 Nov 2013 00:34:04 GMT
Connection: keep-alive

"hello Adron"
[/sourcecode]

Here the content is returned as “hello Adron” and the header returns a 200. The content type is application/json format with the length returned as 13. Note also the connection is set to keep-alive. Let’s dive into that.

If we change the connection type, which is important for many scenarios, we have to send extra header information to ask for the response to be returned accordingly. In order to do that we can pass the -H or –header option in with the curl request. If the command is issued with an -i and -H as shown below the result will be as follows.

[sourcecode language=””]
curl -iH "connection: close" http://0.0.0.0:8080/hello/Adron
HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 13
Date: Wed, 27 Nov 2013 00:41:07 GMT
Connection: close

"hello Adron"
[/sourcecode]

If we take away the -i we’ll just get the response, which is “hello Adron” and wouldn’t get the header, which now returns Connection: close in the response. By default, curl sets the connection as keep-alive, but in order to make the request return right away the connection needs to be issued a request for it to close. By setting the -H or –header value of connection to close, we get the response immediately. With restify, it is also important to note that it checks if the user agent is curl.

If it is curl the connection header to close and removes the content-length header. However I’ve experienced that restify is not doing this in all circumstances or that the use of curl is being changed in some of my usage. So don’t always assume that this will be the case. The safest bet is to set the connection closed when done. Thus, adding -H or –header and setting connection to close with a “Connection: close”.

Beyond Basic Get

Ok, so that’s a pretty solid use of GET with cURL. Let’s dive into some puts and deletes with a get or two thrown in for comparison. Change the executing code to the code shown in the server.js file below.

[sourcecode language=”javascript”]
var restify = require(‘restify’);

function send(req, res, next) {
res.send(‘hello ‘ + req.params.name);
return next();
}

var server = restify.createServer();
server.post(‘/hello’, function create(req, res, next) {
res.send(201, Math.random().toString(36).substr(3, 8));
return next();
});
server.put(‘/hello’, send);
server.get(‘/hello/:name’, send);
server.head(‘/hello/:name’, send);
server.del(‘hello/:name’, function rm(req, res, next) {
res.send(204);
return next();
});

server.listen(8080, function() {
console.log(‘%s listening at %s’, server.name, server.url);
});
[/sourcecode]

The first section of code to check out is around the function send.

[sourcecode language=”javascript”]
function send(req, res, next) {
res.send(‘hello ‘ + req.params.name);
return next();
}
[/sourcecode]

This function is setup to take req, res, and then handle next. The req is the request, the res is the response and the next is for issuing to return and continue with the result. The next bit of code starts the server with the restify.createServer();. Just below that there are several handlers that are setup.

[sourcecode language=”javascript”]
server.post(‘/hello’, function create(req, res, next) {
res.send(201, Math.random().toString(36).substr(3, 8));
return next();
});
server.put(‘/hello’, send);
server.get(‘/hello/:name’, send);
server.head(‘/hello/:name’, send);
server.del(‘hello/:name’, function rm(req, res, next) {
res.send(204);
return next();
});
[/sourcecode]

Now at this point I got a little sidetracked writing this blog entry. But I thought to myself, “hell, I’m just figuring out some parts of Webstorm, I ought to blog a little about it!” So, here’s…

A Little Webstorm Love

Webstorm and cURL. Click the image for a full size image.
Webstorm and cURL. Click the image for a full size image.

Before continuing on I wanted to cover a few tidbits of the Jetbrains Webstorm IDE. I often switch back and forth between the Sublime/Terminal combo and the Webstorm IDE. The really cool thing about this IDE is that it actually has a Terminal built in, color coding and autocomplete of the code, refactoring, and file and folder viewer and a whole slew of other features. In the image above that I’ve included there are four neon pointers that are displaying some of the key functionality that I’m using to work through this blog entry with cURL and Restify.

The arrows, from left to right are pointing to the following IDE elements. The first is pointing to the javascript files storgie.js and starter.js which I added specifically to show the git status colors. Each color reflect if the file is new (green), has changes (light blue) or is committed with no changes (white). The second arrow is just pointing to the general folder structure. Here you can see the hidden .* files like the .gitignore and .npmignore and also easy to dig through the node_modules directory. Webstorm also uses the node_modules directory to provide extra information and autocomplete to the code as you work through your coding session. The next arrow is pointing out the terminal in the editor, which is where I’m working up the curl examples in this blog entry. Then of course the color coded starter.js file that is one of the working examples. Webstorm, simply, is pretty sweet. I’m looking to do some more walk throughs and work sessions with the editor in the near future. So if interested, be sure to keep reading and subscribe, I’ll be sure to post any links to wherever the material ends up right here.

Now, back to the cURLing. 😉

After I toyed around with Webstorm and bit to get it work in a way that was efficient for me to use it for developing these APIs I stumbled into an idea. I’d provide a page for the APIs that could be located at the root of the API service such as http://api.blagh.com. The APIs would still be a restful type schema like http://api.blagh.com/thing/create or http://api.blagh.com/thing/destroy but at the very root would be a kind of docs. Maybe this could just be a status page even. Whatever the case, there needs to be something at http://api.blagh.com so I decided right then and there I’d switch to express.js to build the rest of the API services. Restify is fine and all but for this, it seemed like express would have all of the pieces I need for this.

Just to boot, I then read a few articles about express being faster such as this one. But then I read this issue on github and almost thought, “maybe I should keep using restify” but then I thought, “dammit, just get it done the way you want it built” so it was back to express. It’s easy enough to change this later so I just got back to coding, albeit with express now. So keep reading and in the next day or two I’ll have part two of this series on using cURL to hack at your APIs.

Enjoy the composite coding & cheers!

References:

Monster Bits of WCF and Itty Bitty Bits of MVC

I’ve had the pleasure of working with WCF on three specific projects that have brought me to this blog entry.  I haven’t used WCF on only three projects, there are just three that have brought me to write this entry.  I’ve used WCF a lot, since back when it was a beta.  WCF is great when creating SOAP services and you aren’t too worried about the extra overhead.  WCF is great for what it does, for the ideas behind what it does.

But writing RESTful web services doesn’t seem to be its strong point.  On two huge projects WCF has basically been dropped, or so scaled back one really can’t honestly say that WCF is used, and either an alternate framework has been used or a LOT of custom code ends up being written.

The first time I used WCF to implement RESTful service was at Webtrends.  Albeit, there is a single service that returns all types of awesome reporting goodness, however to implement basic auth, logging, polling, and a whole host of other Enterprise Scale needs we had to custom roll most of it.  Keep in mind, when doing this the WCF REST capabilities were brand shiny and new, so there were a few issues to work out.  Now, maybe WCF could be used and a lot of it would be built in.  However as it was, we easily spent 60% of the time writing custom bits because WCF just didn’t have the right options with the right bindings.

But I digress, I recently implemented an architecture using RESTful services using WCF.  But now I’ve come to find myself dropping WCF because of the back and forth and going with ASP.NET MVC controller actions to return JSON instead.  With that, here’s to the lean mean controller actions rockin’ the JSON.  Here’s what I’ve done to port everything from WCF to MVC.

To see what I had done, except on a smaller scale, check out my previous blog entry on ASP.NET MVC with a WCF project smack in the middle of it.  This will give you an idea of what I was using the WCF services for, merely to provide JSON results via RESTful services to an ASP.NET MVC front end requesting data with jQuery.

This is how I’ve setup the controller to return JSON results via an action.

First start a new ASP.NET MVC Project and add a new controller.  Cleanup the controller so that you have the following in the controller.

[sourcecode language=”csharp”]
using System.Web.Mvc;

namespace RestWebServicesWithMvc.Controllers
{
public class ServicesController : Controller
{

}
}
[/sourcecode]

Now create a testing project to create your test first.  Remember to add the reference to the ASP.NET MVC project.  From here we can create the first test.

[sourcecode language=”csharp”]
using Microsoft.VisualStudio.TestTools.UnitTesting;
using RestWebServicesWithMvc.Controllers;

namespace RestWebServicesWithMvc.Tests
{
[TestClass]
public class UnitTest1
{
[TestMethod]
public void TestMethod1()
{
var controller = new ServicesController();
var result = controller.GetBiz();
Assert.IsNotNull(result);
}
}
}
[/sourcecode]

Now fill out the basic skeleton of the action in the controller.

[sourcecode language=”csharp”]
using System;
using System.Web.Mvc;

namespace RestWebServicesWithMvc.Controllers
{
public class ServicesController : Controller
{
public ActionResult GetBiz()
{
throw new NotImplementedException();
}
}
}
[/sourcecode]

Now we should have a good red running on our test.  Let’s create a business model class to return as our result next.

[sourcecode language=”csharp”]
namespace RestWebServicesWithMvc.Models
{
public class BizEntity
{
public string BizName { get; set; }
public string StartupDate { get; set; }
public int SalesThisMonth { get; set; }
}
}
[/sourcecode]

Now let’s return that object with some fake data.  First add [AcceptVerbs(HttpVerbs.Post)] to the action in the controller.  Then return a serializable object to the actual method as shown.

[sourcecode language=”csharp”]
[AcceptVerbs(HttpVerbs.Post)]
public ActionResult GetBiz()
{
return Json(
new BizEntity()
{
BizName = "Adron’s Code Workingz",
SalesThisMonth = 3429,
StartupDate = DateTime.Now.AddYears(-5).ToString()
}
);
}
[/sourcecode]

This is a quick starter.  There are a few dozen other options around this capability including other verb usage.  For many, this is all you need for your services, especially if their primary purpose is to communicate with a specific website and one doesn’t want the overhead of WCF.

Shout it