Jules S. Damji Presenting “MLflow: Infrastructure for a Complete Machine Learning Life Cycle”

jules-damjiIntroducing Jules S. Damji > @2twitme < presenting “MLflow: Infrastructure for a Complete Machine Learning Life Cycle”.

Jules S. Damji is an Apache Spark Community and Developer Advocate at Databricks. He is a hands-on developer with over 20 years of experience and has worked at leading companies, such as Sun Microsystems, Netscape, @Home, LoudCloud/Opsware, VeriSign, ProQuest, and Hortonworks, building large-scale distributed systems. He holds a B.Sc and M.Sc in Computer Science and MA in Political Advocacy and Communication from Oregon State University, Cal State, and Johns Hopkins University respectively.

He’s also the Program Chair for Spark + AI Summit

ML development brings many new complexities beyond the traditional software development lifecycle. Unlike in traditional software development, ML developers want to try multiple algorithms, tools, and parameters to get the best results, and they need to track this information to reproduce work. In addition, developers need to use many distinct systems to productionize models. To address these problems, many companies are building custom “ML platforms” that automate this lifecycle, but even these platforms are limited to a few supported algorithms and to each company’s internal infrastructure.

In this session, we introduce MLflow (mlflow.org), a new open source project from Databricks that aims to design an open ML platform where organizations can use any ML library and development tool of their choice to reliably build and share ML applications. MLflow introduces simple abstractions to package reproducible projects, track results, and encapsulate models that can be used with many existing tools, accelerating the ML lifecycle for organizations of any size.

With a short demo, you see a complete ML model life-cycle example, you will walk away with: MLflow concepts and abstractions for models, experiments, and projects How to get started with MLFlow Using tracking Python APIs during model training Using MLflow UI to visually compare and contrast experimental runs with different tuning parameters and evaluate metrics

Come check out Jules S. Damji’s talk at ML4ALL happening April 28th-30th in amazing Portland, Oregon! Get your tickets to attend here. For the schedule, our excellent sponsors docs for the conference, check out the ML4ALL Conference Site!

Seth Jaurez Presenting “Deep Learning for Computer Vision with Applications for Wildlife Conservation”

UPDATED: Video Added from the Conference!

seth-juarezIntroducing Seth Jaurez > @sethjuarez < presenting “Deep Learning for Computer Vision with Applications for Wildlife Conservation”.

Seth Juarez holds a Master’s Degree in Computer Science where his field of research was Artificial Intelligence, specifically in the realm of Machine Learning. Seth is a Microsoft Evangelist working with the Channel 9 team. When he is not working in that area, Seth devotes his time to an open source Machine Learning Library, specifically for .NET, intended to simplify the use of popular machine learning models, as well as complex statistics and linear algebra.

Deep Learning is one of the buzziest of tech buzz words at the moment. This session is designed to remove the mysticism from this amazing form of Artificial Intelligence. Attendees will be led through the wilderness of the foundational principles underlying modern machine learning until they reach the oasis of a full-fledged understanding of deep learning for computer vision. While this session is not for the faint of heart, initiates will attain a solid understanding of the basics of machine learning all the way through powerful image-deciphering convolutional neural networks.

Come check out Seth Jaurez’s talk at ML4ALL happening April 28th-30th in amazing Portland, Oregon! Get your tickets to attend here. For the schedule, our excellent sponsors docs for the conference, check out the ML4ALL Conference Site!

Siyu Yang Presenting “Deep Learning for Computer Vision with Applications for Wildlife Conservation”

siyu-yangIntroducing Siyu Yang > @yangsiyu_ < presenting “Deep Learning for Computer Vision with Applications for Wildlife Conservation”.

Siyu is a data scientist at the AI for Earth program at Microsoft focusing on developing machine learning enabled solutions to aid environmental conservation efforts at university labs, startups, non-profits, and government agencies. Before joining this team, she worked on data powered code completion tools at Visual Studio.

At the AI for Earth program at Microsoft, we find new ways to use machine learning to solve global environmental challenges. This talk is an overview of several problems in wildlife conservation where computer vision is poised to make a significant impact. We will survey three different problems in this space: species classification from handheld photos, automated camera trap image processing, and animal detection from aerial imagery. For each area, we will discuss (1) why this problem is challenging from a computer vision perspective, (2) why solving this problem can support conservation, and (3) the data sets we’re working with and the models we’ve built to address this problem. The talk will also include a demo of the AI for Earth Species Classification API and the Camera Trap Animal Detection API.

What will attendees learn:

  1. Find out what Microsoft’s AI for Earth program is all about
  2. Understand how data, particularly visual data, is used by wildlife biologists for conservation.
  3. Experience through live demos how computer vision techniques can bring value to people working with such data, and understand our plan to deploy these technologies.

Come check out Siyu Yang’s talk at ML4ALL happening April 28th-30th in amazing Portland, Oregon! Get your tickets to attend here. For the schedule, our excellent sponsors docs for the conference, check out the ML4ALL Conference Site!

Art, JavaScript, and Machine Learning with Amy Cheng at ML4ALL 2018

One talk that opened my mind to new ideas about where, how, and when to use machine learning was Amy Cheng’s @am3thyst talk on Machine Learning, Art, and JavaScript. I introduced her last year in my previous post, and am linking the talk below. Give it a watch, it’s worth the listen!

ML4ALL 2019 is on. CFP is still open, a little longer. It’s closing on the 18th. In addition we’ve got tickets available for early birds, but those will be gone soon too so pick one up while you can, it’s only a $200.00 bucks. You’ll basically be getting a ticket to conference that’ll be 10x the value of one of these big corporate conferences for $200 bucks, in the awesome city of Portland, and I can promise you it’ll be a conference you’ll get more out of then you currently think you will! Join us, it’s going to be a great time!

More on ML4ALL, Learning About “Using Your Data to Give Your Customers Superpowers”

This year’s ML4ALL is coming up real soon, more details over on the site, but here I’m providing some retrospective talks from last year to get you ready for this year’s ML4ALL!

In this talk Kirsten Westeinde (@kmkwesteinde) provides us insights into how your customers can gain superpowers through effective data use. Last year, I introduced Kirsten.

This year’s event is coming up, if you want to get deeper into, pr present on machine learning, learn ways to improve your use of, and eliminate biases like this then ML4ALL is going to be a great conference for you. Check it out, we have an open CFP, tickets are available (early bird still!)

Continue reading “More on ML4ALL, Learning About “Using Your Data to Give Your Customers Superpowers””